»

Matthew Causley

Research Interest

Numerical analysis

High performance computing

 

Education

B.S Applied Mathematics, Kettering University, Flint, MI 2006

Ph.D. Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 2011

 

Experience

Assistant Professor, Kettering University, Flint, MI, 2014-present

Course Instructor, Michigan State University, Lansing, MI, 2011-2014

Course Instructor, New Jersey Institute of Technology, Newark, NJ, 2009-2010

Private Trigonometry Tutor, New Jersey Institute of Technology, Newark, NJ, 2008

Teaching Assistant, New Jersey Institute of Technology, Newark, NJ, 2006-2011

Actuarial Co-op, Towers Perrin, Southfield, MI, 2004-2006

Math & Physics Tutor, Kettering University, Flint, MI, 2002-2005

 

Research Activities

Novel methods for high order PDE solvers, Andrew Christlieb and David Seal, Michigan State University, East Lansing, MI, 2011-present

Modeling for Optimal Stochastic Control Problems in online auctions, Albert Cohen, Michigan State University, East Lansing, MI 2014-Present

 

Selected Publications

Causley, M.F., and Christlieb, A., Higher order A-stable schemes for the wave equation using a successive convolution approach. accepted, SIAM Journal of Numerical Analysis.

Causley, M.F., Guclu, Y., Wolf, E. and Christlieb, A., Method of Lines Transpose: A Fast Implicit Wave Propagator. submitted, Mathematics of Computation.

Causley, M.F. and Petropoulos, P.G. On Numerically Solving the Cole-Cole Dielectric Model. in preparation.

Causley, M.F. and Petropoulos, P.G. On the Time-Domain Response of Havriliak-Negami Dielectrics. Transactions on Antennas and Propagation, 61 (6) (2013), 3182-3189.

Causley, M.F., Christlieb, A., Van Groningen, L. and Ong, B. Method of Lines Transpose: An Implicit Solution to the One Dimensional Wave Equation. to appear, Mathematics of Computation.

Causley, M.F., Petropoulos, P.G. and Jiang, S. Incorporating the Havriliak-Negami Dielectric Model in the FD-TD Method. Journal of Computational Physics, 230 (10) (2011) 3884-3899.

McCartin, B.J, and Causley, M.F. Angled Derivative Approximation of the Hyperbolic Heat Conduction Equations. Journal of Applied Mathematics and Computation, 182(2) (2006) 1581-1607.

 

Contact Information

Email: mcausley@kettering.edu

Phone: (810) 762-7902

Office: 2-100H AB